
ISSN 0005-1179 (print), ISSN 1608-3032 (online), Automation and Remote Control, 2025, Vol. 86, No. 6, pp. 589–597.
c© The Author(s), 2025 published by Trapeznikov Institute of Control Sciences, Russian Academy of Sciences, 2025.
Russian Text c© The Author(s), 2025, published in Avtomatika i Telemekhanika, 2025, No. 6, pp. 118–130.

OPTIMIZATION, SYSTEM ANALYSIS, AND OPERATIONS RESEARCH

Optimization by a Probabilistic Criterion

in a Dynamic Test Passing Model

S. V. Ivanov∗,a and A. V. Stepanov∗,b

∗Moscow Aviation Institute (National Research University), Moscow, Russia
e-mail: asergeyivanov89@mail.ru, brus.fta@yandex.ru

Received February 23, 2025

Revised April 8, 2025

Accepted April 12, 2025

Abstract—A dynamic model of passing a time-limited test is considered. The problems of
finding program and positional strategies that maximize the probability of test passing are
stated. A strategy is to complete or not complete a current test task. A positional strategy
is defined as a function of the time spent since the test start and the sum of points scored for
previous tasks. Bellman’s dynamic programming method is used to design a positional strategy.
An algorithm based on the branch-and-bound method is proposed to find an optimal program
strategy. The results of calculations are presented and compared with those of a similar problem
with a time limit (i.e., when the test is considered unpassed if the testee does not meet the
limit).

Keywords : testing model, probabilistic criterion, control design

DOI: 10.31857/S0005117925060076

1. INTRODUCTION

With the modern application level of information technologies in education, it is topical to
develop, in particular, the theory of computerized adaptive testing (CAT). Its foundations were
laid at the end of the twentieth century, e.g., in the works of G. Rasch [1]. A good survey of the
state-of-the-art results in this field can be found in [2]. Conceptually CAT involves information
about the testee’s performance (the results of learning) and passing of a control event in the process
of forming the test content and deciding on test completion. (Below testees will be called subjects.)
The processing of this information and decision-making are often implemented with contemporary
machine learning and artificial intelligence techniques. The same technologies are also used to form
individual learning trajectories in learning management systems (LMSs); for example, see [3, 4].
Recent works in this area include [5–7]. Such technologies are commonly applied by test organizers
and LMS software developers. However, the testing problem can also be viewed from the subject’s
standpoint, who needs to develop an individual strategy for passing an (often, time-limited) test.
The test completion time is directly related to the subject’s response time to test tasks. Many
publications have been devoted to probabilistic models of the response time of a subject or an
LMS user to a task; for example, we refer to [8–10]. The problem of finding the subject’s optimal
strategy by the criterion of maximizing the probability of scoring a given sum of points under a
time limit was considered in [11]. A similar problem in a quantile formulation (maximizing the sum
of points scored during a test under a probabilistic time constraint) was studied in [12]. In the last
two papers mentioned, the following stochastic programming problems were solved: before a test (a
priori), a subject chooses as an individual strategy a group of tasks he/she will tackle first. Other
test tasks are performed by the subject if he/she has enough time after completing the first group
of tasks. The above formulations neglect the sequence in which a subject performs test tasks. This

589



590 IVANOV, STEPANOV

may be natural if a subject receives no information about the correctness of performing a current
task and, consequently, about the current sum of points scored. However, very often, especially in
LMS testing, e.g., [4], such information is available to a user and can be utilized by him/her during
the test. Therefore, it is relevant to consider dynamic testing models with a test passing strategy
corrected after each task considered by a subject.

This paper deals with a dynamic model of passing a fixed time-limited test by the criterion of
maximizing the probability of the subject’s scoring at least a given sum of points. The problems of
finding the subject’s program and positional strategies are stated. Algorithms are proposed to solve
these problems based on stochastic and dynamic programming methods. The resulting solutions
are compared with those obtained in [11, 12] for the same initial data.

2. DESCRIPTION OF THE MODEL AND CONTROL DESIGN PROBLEM

Consider a dynamic system describing test passing by a subject (e.g., a student). At the kth
step, the subject is asked to perform a task; in case of success, he/she is awarded bk points, k = 1, n.
It is required to score at least ϕ points to pass the test successfully. The test completion time is
limited by T̄ . The time for performing the kth task is described by a random variable τk. The
correctness of performing the kth task is described by a random variable Xk : it takes value 1 if
the kth task has been performed correctly and value 0 otherwise. A strategy is defined by a set
of variables u = (u1, . . . , un), where uk = 1 if the subject attempts to perform the kth task and
uk = 0 otherwise. Now we introduce the state variables of the dynamic system. Let Tk be the time
spent to complete the first k tasks and Sk be the sum of points scored during this time. Then the
system dynamics are described by the equations

Tk = Tk−1 + τkuk, (1)

Sk = Sk−1 + bkXkI{Tk � T̄}uk, (2)

T0 = 0, S0 = 0, k = 1, n, (3)

where I{·} denotes the indicator of the event in curly brackets, equal to 1 if the condition is satisfied
and to 0 otherwise. Thus, bk points are awarded if the subject has spent no more than T̄ units of
time on the first k tasks. Assume that all the random variables τk are discrete with a finite set Tk of
realizations and let pk(t, x) = P{τk = t,Xk = x}. In this paper, for all k = 2, n, the sigma algebra
generated by the random variables Xk and τk is supposed to be independent of the sigma algebra
generated by the random variables X1, . . . ,Xk−1 and τ1, . . . , τk−1. Such an assumption means that
the answer to the current test questions does not affect further test performance. How does the
knowledge of the correctness of performing previous tasks influence the correctness of performing
subsequent ones? This issue requires additional statistical analysis. Let S(u) be the random sum
of points scored, equal to the value Sn under the chosen control action u.

We state the problem of finding the maximum of the probability function

P 1
ϕ,T̄ (u) = P{S(u) � ϕ} → max

u∈{0,1}n
. (4)

This problem is to design a program strategy for choosing tasks to be performed under which the
subject will maximize the probability of test passing.

Now assume that the control action is chosen in the class of positional strategies. In other words,
when choosing his/her strategy at each step, the subject considers the current time spent and the
current sum of points scored for the previous tasks. We denote by uk(Tk−1, Sk−1) the subject’s
strategy at the kth step, represented by the following possible values of some function uk of the
system’s state variables: 1 if the subject tries to perform the kth task and 0 otherwise. Let u be a

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



OPTIMIZATION BY A PROBABILISTIC CRITERION 591

vector composed of the functions u1, . . . ,un to describe a positional strategy. We denote by S(u)
the random sum Sn of points defined by equations (1) and (2) when substituting uk = uk(Tk, Sk)
therein. Boldface is used here to distinguish the positional strategy u (a function) from the program
strategy u (a set of variables) as well as the sum S(u) of points scored by the positional strategy
from the sum Sn of points scored by the program strategy.

We state the problem of finding the maximum of the probability function under the positional
strategy:

P 2
ϕ,T̄ (u) = P{S(u) � ϕ} → max

u∈U
, (5)

u∗ = (u∗
1, . . . ,u

∗
n) ∈ Argmax

u∈U
P 2
ϕ,T̄ (u), (6)

where U is the set of admissible control functions. Since the random response time for any task
is a discrete random variable with a finite number of values and the correct answer is modeled
by the Bernoulli distribution, the number of states (Tk, Sk) at the kth step is finite. However, for
convenience of optimization, the control action uk at the kth step will be chosen as a function on
the wider set of states Tk × Sk, where Tk and Sk are some finite sets containing all possible values
of the states Tk and Sk, respectively. For this reason, U is supposed to be the set of all functions

from
n⊗

k=1
Tk × Sk into {0, 1}n.

Remark 1. In the class of program strategies, the problem of maximizing the probability of
scoring a required sum of points under a time limit was solved in [11]. In the current notation, this
problem has the form

P̃ 1
ϕ,T̄ (u) = P{S(u) � ϕ, T (u) � T̄} → max

u∈{0,1}n
, (7)

where T (u) is the random test completion time under the program strategy u. Within problem (7),
a test is considered unpassed if the subject fails to meet the time limit even when scoring the
required sum of points. There is no requirement to meet the time limit in problem (4), but no
points are awarded for performing tasks after the time T̄ . Meanwhile, the advantage of (7) is the
independence of the optimal choice of tasks from their order in the test. In problems (4) and (5),
the optimal set of tasks to be performed depends on their order. Note that the optimal value
of the objective function in problem (7) is a lower bound for those of the objective functions in
problems (4) and (5) for any task order in the test.

Remark 2. Problem (7) can be generalized to the case of positional strategies. As a result, we
obtain the problem

P̃ 2
ϕ,T̄ (u) = P{S(u) � ϕ, T(u) � T̄} → max

u∈U
, (8)

where T(u) is the random test completion time Tn defined by equations (1) when substituting
uk = uk(Tk, Sk) therein. As will be shown below, problem (5) turns out to be completely equivalent
to problem (8), in contrast to the pair of problems (4) and (7).

3. POSITIONAL CONTROL DESIGN

To solve the positional control design problem (5), we apply Bellman’s dynamic programming
method. Let us define the Bellman function for k = 1, n by the rule

Bk(Tk−1, Sk−1) = max
uk,...,un

P{S(u) � ϕ | Tk−1, Sk−1}. (9)

At the last step, the Bellman function is defined by the equality

Bn+1(Tn, Sn) = I{Sn � ϕ}. (10)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



592 IVANOV, STEPANOV

Note the absence of dependence on Tn at the last step: it has been introduced for the convenience
of writing the dynamic programming relations. Obviously,

max
u∈U

P 2
ϕ,T̄ (u) = B1(T0, S0).

We obtain the dynamic programming relations using the formula of total probability:

Bk(Tk−1, Sk−1) = max
uk=uk(Tk−1,Sk−1)

max
uk+1,...,un

∑
t∈Tk , x∈{0,1}

P{S(u)

� ϕ | Sk = Sk−1 + bkxI{Tk−1 + tuk � T̄}uk, Tk = Tk−1 + tuk}pk(t, x)

= max
uk∈{0,1}

∑
t∈Tk , x∈{0,1}

Bk+1(Tk−1 + tuk, Sk−1 + bkxI{Tk−1 + tuk � T̄}uk)pk(t, x). (11)

The control action u∗
k(Tk−1, Sk−1) will be determined by maximizing the Bellman function at the

kth step.

Since the random variables have discrete distributions, all the functions in the dynamic pro-
gramming method are measurable, which ensures the correctness of this method.

Thus, the problem can be solved using the following algorithm, which implements dynamic
programming.

Algorithm 1 (positional control design).

1. Set k := n+ 1; for all Sn ∈ Sn calculate the value Bn+1(Tn, Sn).

2. If k > 1, set k := k − 1; otherwise, proceed to Step 4.
3. For all Tk−1 ∈ Tk−1 and Sk−1 ∈ Sk−1 calculate the value Bk(Tk−1, Sk−1) and determine

u∗
k(Tk−1, Sk−1).

4. Calculate the value B1(0, 0) and determine the control action u∗
1(0, 0) of the first step.

Note that with additionally calculating B1(t, s) at Step 4 of Algorithm 1, we will maximize the
objective functional P 2

ϕ−s,T̄−t
(u). These calculations can be carried out if the set of reachable states

of the dynamic system with the initial conditions T0 = t, S0 = s is a subset of Tk × Sk at each kth
step. Thus, it is possible to solve the problem for several values of ϕ and T̄ at once.

The above solution method allows proving the equivalence of problems (5) and (8).

Proposition 1. The optimal values of the objective functionals in problems (5) and (8) are
equal. There exist strategies optimal in both problems, namely, those satisfying the condition
u∗
k(Tk−1, Sk−1) = 0 for Sk−1 � ϕ or Tk−1 > T̄ .

Proof. To solve problem (8), we also apply the dynamic programming method. For this pur-
pose, it is necessary to define the Bellman function at the last step by the rule B̃n+1(Tn, Sn) =
I{Tn � T̄ , Sn � ϕ}. The dynamic programming relations for solving problem (8) will be the same
as (11), with the functions B̃k written instead of Bk.

Let us analyze the resulting dynamic programming relations. Note that for Tk−1 > T̄ (the
time limit is exhausted) or Sk−1 � ϕ (the required sum of points is scored), when computing
Bk(Tk−1, Sk−1) and B̃k(Tk−1, Sk−1), we can assign u∗

k(Tk−1, Sk−1) = 0 (the condition formulated in
Proposition 1).

Now let us show the following result by induction: Bk(Tk−1, Sk−1) = B̃k(Tk−1, Sk−1) for Tk−1� T̄ ,
with the presence of coincident strategies among those on which the maximum is reached, and if
Sk−1 < ϕ, then the maximum is reached on the same strategies. For k = n this assertion is true by
the definition of the above Bellman functions. Assuming its truth for Bk+1(Tk, Sk), we establish it
for Bk(Tk−1, Sk−1). If Sk−1�ϕ and Tk−1� T̄ , then Bk(Tk−1, Sk−1)= B̃k(Tk−1, Sk−1)=1 (as noted

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



OPTIMIZATION BY A PROBABILISTIC CRITERION 593

above, we can take u∗
k(Tk−1, Sk−1) = 0). Two cases may arise when calculating Bk(Tk−1, Sk−1) un-

der the conditions Sk−1 < ϕ and Tk−1 � T̄ : 1) If Tk>T̄ , then the equality Sk = Sk−1 holds and the
value Bk(Tk, Sk−1) = B̃k(Tk, Sk−1) = 0 is considered. 2) If Tk � T̄ , then the value Bk(Tk, Sk−1) =
B̃k(Tk, Sk−1) is considered (equality is valid by the inductive hypothesis). In both cases, we
have Bk(Tk−1, Sk−1) = B̃k(Tk−1, Sk−1) and the maximum in the definitions of Bellman functions is
achieved on the same strategies. Thus, the proof of Proposition 1 is complete.

Remark 3. Among the optimal strategies in problem (5), there may be strategies satisfying the
condition u∗

k(Tk−1, Sk−1) = 1 for Sk−1 � ϕ, which are not optimal ones in problem (8). Indeed,
when the required sum of points has been scored, performing additional tasks reduces the probabil-
ity of not exceeding the time limit, decreasing the value of the objective functional in problem (8)
compared to the value of that in problem (5).

4. PROGRAM CONTROL DESIGN

First, we describe a method for calculating the objective functional in (4) for a fixed u ∈ {0, 1}n.
Let us define the following functions:

Bu
n+1(Tn, Sn) = I{Sn � ϕ},

Bu
k (Tk−1, Sk−1) =

∑
t∈Tk , x∈{0,1}

Bu
k+1(Tk−1+ tuk, Sk−1+ bkxI{Tk−1+ tuk � T̄}uk)pk(t, x),

(12)

where k = 1, n. The value Bu
1 (0, 0) yielded by these formulas is equal to that of the probability

functional P 1
ϕ,T̄

(u). This fact follows from the definition of the Bellman function (9) since the

relations (12) are similar to the Bellman equations but without maximization and with the control
strategy uk at the kth step.

Owing to the use of dynamic relations, the above procedure is much more efficient than the
direct calculation of probability by enumerating all possible realizations of the random variables
Xk and τk.

The optimal program control can be found by enumerating all possible control actions u∈ {0, 1}n.
In this case, it is possible to eliminate the control actions for which

n∑
k=1

bkuk < ϕ : such actions do

not ensure test passing for any realizations of the random variables with a nonzero probability. Also,
we eliminate the control actions u with un = 0 because they are no worse than the corresponding
ones with un = 1. Indeed, trying to perform the last task cannot reduce the probability of test
passing.

We propose a procedure for significantly reducing the number of program control actions enu-
merated. Assume that the values of the Bellman function Bk(Sk−1, Tk−1) are known. (They can
be calculated using the algorithm from the previous section.) Let us introduce the notation

Cu1,...,uk
k,k (Tk−1, Sk−1) =

∑
t∈Tk , x∈{0,1}

Bk+1(Tk−1+ tuk, Sk−1+ bkxI{Tk−1+ tuk� T̄}uk)pk(t, x),

Cu1,...,uk
l,k (Tl−1, Sl−1) =

∑
t∈Tl, x∈{0,1}

Cu1,...,uk
l+1,k (Tl−1+ tul, Sl−1+ blxI{Tl−1+ tul� T̄}ul)pl(t, x),

l = k − 1, k − 2, . . . , 1, Ck(u1, . . . , uk) = Cu1,...,uk
1,k (T0, S0).

(13)

The value Cu1,...,uk
l,k (Tk−1, Sk−1) describes the minimum loss starting from the kth step under the

control actions u1, . . . , uk applied at the first k steps. These values are calculated from the dynamic
programming relations with fixed control actions at the first k steps. The values Ck(u1, . . . , uk)
can be used as upper bounds for the objective function.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



594 IVANOV, STEPANOV

Proposition 2. The following relations hold for the values given by (13):

1) Ck(u1, . . . , uk) � Bu
1 (0, 0) = P 1

ϕ,T̄
(u) = Cn(u1, . . . , un).

2) Ck(u1, . . . , uk) � Ck+1(u1, . . . , uk+1) for all k = 1, n− 1.

Proof. Equations (13) are the dynamic Bellman relations with the control actions u1, . . . , uk at
the first k steps. Therefore, the value Ck(u1, . . . , uk) coincides with that of the objective functional
in problem (5) with positional control, where the control vector u has fixed components equal
to u1, . . . , uk at the first k steps and the optimally chosen components at the subsequent steps
(with respect to the state achieved in k steps). Hence, for any program control u with fixed
u1, . . . , uk, we have the inequality Ck(u1, . . . , uk) � Bu

1 (0, 0). In addition, the control vector with
fixed components u1, . . . , uk+1 gives a smaller value of the performance functional in (5) than
that with fixed components u1, . . . , uk. Therefore, we obtain Ck(u1, . . . , uk) � Ck+1(u1, . . . , uk+1)
for all k = 1, n − 1. The equality Bu

1 (0, 0) = P 1
ϕ,T̄

(u) has been established above. The proof of
Proposition 2 is complete.

Thus, if ψ < max
u∈{0,1}n

P 1
ϕ,T̄

(u) (the known lower bound for the optimal value of the objective func-

tion) and Ck(u1, . . . , uk) � ψ for some k, then by Proposition 2 we have P 1
ϕ,T̄

(u) < max
u∈{0,1}n

P 1
ϕ,T̄

(u)

and, consequently, any strategy u with the corresponding first k components is not optimal. There-
fore, Algorithm 2 based on the branch-and-bound method (see below) can be proposed to find the
program strategy. This algorithm traverses a binary tree with the following properties: the root
corresponds to the variable u1; the outgoing edges of the root, to values 1 and 0 of this variable; the
adjacent vertices of the root, to the variable u2; the outgoing edges of these vertices, to the values of
the variable u2, and so on. The vertices corresponding to the variable un have two outgoing edges
corresponding to the values of the variable un and connecting them to the leaves. A depth-first
search is applied to traverse the tree; the search can be terminated if its further execution does not
yield an optimal strategy. To describe the termination time, we introduce a function L(u1, . . . , uk) :
it takes value 0 if no further depth-first search is performed and value 1 otherwise. The variables
ψ and u∗ modified when executing the function L(u1, . . . , uk) are global.

Algorithm 2 (program control design).

0. Define the function L(u1, . . . , uk) by the following rule:

0a. Set ũ = (u1, . . . , uk, 1, . . . , 1). If
n∑

k=1
bkũk � ϕ or (k = n and un = 1), calculate Ck(u1, . . . , uk);

otherwise, return L(u1, . . . , uk) = 0.

0b. If Ck(u1, . . . , uk) � ψ, return L(u1, . . . , uk) = 0.
If k = n and Cn(u1, . . . , un) > ψ, assign ψ := Cn(u1, . . . , un) and u∗ := (u1, . . . , un) and return

L(u1, . . . , uk) = 0.
If k = n and Cn(u1, . . . , un) � ψ, return L(u1, . . . , uk) = 0;
otherwise return L(u1, . . . , uk) = 1.

1. Set k := 1, ψ := 0, u∗ := (0, . . . , 0), and u1 := 1.

2. Calculate L(u1, . . . , uk).

3. If L(u1, . . . , uk) = 1, set k := k + 1 and uk := 1 and get back to Step 2.
If L(u1, . . . , uk) = 0 and uk = 1, set uk := 0 and get back to Step 2.
If L(u1, . . . , uk) = 0 and ul = 0 for all l = 1, k, terminate execution of the algorithm;
otherwise, assign k := max{l | ul = 1, l < k} and uk := 0 and get back to Step 2.

Algorithm 2 yields the optimal control strategy u∗ and the corresponding optimal value of the
objective function P 1

ϕ,T̄
(u∗) = ψ.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



OPTIMIZATION BY A PROBABILISTIC CRITERION 595

The depth-first search of the algorithm starts from the variable values uk = 1 : in this case, the
first strategy to be considered is “perform all tasks,” which usually corresponds to a large value of
the probability of test passing.

Remark 4. Algorithm 2 can be applied to solve problem (7) as well. For this purpose, we need to
set Bn+1(Tn, Sn) = I{Tn � T̄ , Sn � ϕ} when determining the values Ck(u1, . . . , uk). In addition,
at Step 0a, it is necessary to eliminate the check (k = n and un = 1) since the optimal strategy
may have un = 0.

5. NUMERICAL RESULTS

The two problems posed were successfully solved for the data from [11]. In the test under
consideration, there are 10 tasks with the points b1 = . . . = b5 = 1, b6 = b8 = 2, b7 = b10 = 3, and
b9 = 4 scored for performing them. A subject needs to score ϕ = 11 points. The probabilities of
correct answers to each task are known. Each task is associated with three possible realizations
of the time spent on a correct answer and its three realizations for an incorrect answer; their
conditional probabilities are known and were given in [11].

Table 1 presents the solutions of problems (4) and (5) depending on the parameter T̄ . Here,
the values of T̄ are different fractions of Tm = 3830, the maximum possible time for performing
all tasks. The run times of Algorithms 2 and 1 to find program (prog.) and positional (pos.)
strategies, respectively, are indicated. The last column shows the time for solving problem (4)
when enumerating all possible program strategies, except for the obviously suboptimal ones, using
formulas (12).

Similarly, Table 2 provides the solutions of problems (7) and (8). The run times of Algorithms 2
and 1 are indicated as well. All calculations were carried out on an Acer Aspire A315-54K laptop
(Intel Core i5-6300U 2.4 GHz CPU, 8Gb RAM).

Table 1. The solutions of problems (4) and (5) depending on the parameter T̄ for ϕ = 11

T̄
Optimal program

strategy u∗ P 1
ϕ,T̄

(u∗)
max
u∈U

P 2
ϕ,T̄

(u)

Run time,
prog./pos. (s)

Run time,
enumeration

(s)

0.4Tm (0, 0, 0, 0, 1, 1, 1, 1, 0, 1) 0.1447 0.1689 0.83 / 0.08 1.69

0.5Tm (1, 1, 1, 0, 1, 1, 1, 1, 0, 1) 0.3583 0.4220 0.45 / 0.07 1.78

0.6Tm (1, 0, 1, 1, 1, 1, 1, 1, 0, 1) 0.5244 0.6130 0.53 / 0.07 1.93

0.7Tm (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 0.6906 0.7242 0.28 / 0.07 2.17

0.8Tm (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.7815 0.7876 0.11 / 0.08 2.34

0.9Tm (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.8006 0.8007 0.15 / 0.07 2.64

Table 2. The solutions of problems (7) and (8) depending on the parameter T̄ for ϕ = 11

T̄
Optimal program

strategy u∗ P̃ 1
ϕ,T̄

(u∗)
max
u∈U

P̃ 2
ϕ,T̄

(u)

Run time,
prog./pos. (s)

Run time,
enumeration

(s)

0.4Tm (0, 0, 0, 0, 1, 1, 1, 1, 0, 1) 0.1447 0.1689 0.99 / 0.08 3.47

0.5Tm (1, 0, 1, 0, 1, 1, 1, 1, 0, 1) 0.2460 0.4220 3.02 / 0.07 3.45

0.6Tm (1, 1, 1, 0, 1, 1, 1, 1, 0, 1) 0.4963 0.6130 1.49 / 0.07 3.45

0.7Tm (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) 0.6059 0.7242 0.64 / 0.07 3.46

0.8Tm (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 0.7216 0.7876 0.63 / 0.07 3.41

0.9Tm (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.7965 0.8007 0.14 / 0.07 3.42

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



596 IVANOV, STEPANOV

According to these tables, positional strategies have an advantage over program ones, not only in
terms of the optimal value of the objective functional but also in terms of the speed of computation.
Comparing problem (4) with the one from [11], we note that, as a rule, the solution of (4) implies
a larger number of subproblems and a larger value of the objective functional. This is due to the
absence of a time limit in problem (4).

As mentioned earlier, the solution of (4) and (5) depends on the order of test tasks. Therefore,
additional calculations of the strategies for passing the same test, but with the reverse order of
tasks, were performed: the first task of the test was made the tenth, the second the ninth, and so
on. The points awarded for the tasks and the probabilities of performing the tasks remained the
same. The results of solving this problem are described in Table 3. For convenience of comparing
the tables, the components of the optimal program strategies are given in reverse order. The run
times of the algorithms are omitted here because they insignificantly differ from the ones in Table 1.
Direct comparison of the solutions shows that the values of the objective functions changed slightly
with the reverse order of the tasks, and the program strategy differs for the time limits 0.4Tm

and 0.6Tm.

Table 3. The solutions of problems (4) and (5) depending on the parameter T̄ for ϕ = 11:

the reverse order of tasks

T̄
Optimal program

strategy (u∗
10, . . . , u

∗
1)

P 1
ϕ,T̄

(u∗) max
u∈U

P 2
ϕ,T̄

(u)

0.4Tm (1, 0, 1, 0, 1, 1, 1, 1, 0, 1) 0.1639 0.1787

0.5Tm (1, 1, 1, 0, 1, 1, 1, 1, 0, 1) 0.3526 0.3834

0.6Tm (1, 1, 1, 1, 1, 1, 1, 1, 0, 1) 0.5340 0.5718

0.7Tm (1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 0.6781 0.7003

0.8Tm (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.7824 0.7847

0.9Tm (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.8007 0.8007

6. CONCLUSIONS

In this paper, we have found program and positional strategies for passing a time-limited test
in which a testee (subject) knows the current sum of points scored after performing each task.
Algorithms for solving these problems have been proposed and their effectiveness has been demon-
strated. The results have been compared with those of the problem statement considered by one
of the authors previously. According to the analysis, with the current sum of points being known
to a subject, there is a test passing strategy under which the subject will exceed the required level
with a higher probability.

Future research may deal with various modifications of this model. In particular, the dependence
of the results of performing test tasks on the current sum of points scored can be considered.
Such a dependence arises due to the psychological peculiarities of some subjects. The possibility
of modifying the Bellman equations (11) in this case needs to be investigated. Also, it seems
interesting to describe the response time of subjects (their answers to test tasks) by continuous
random variables and to study the solution accuracy in the discretization case.

REFERENCES

1. Rasch, G., Probabilistic Models for Some Intelligence and Attainment Tests, Chicago: The University of
Chicago Press, 1980.

2. Xiao, J. and Bulut, O., Item Selection with Collaborative Filtering in On-the-fly Multistage Adaptive
Testing, Appl. Psychol. Meas., 2022, vol. 46, no. 8, pp. 690–704.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025



OPTIMIZATION BY A PROBABILISTIC CRITERION 597

3. Naumov, A.V., Dzhumurat, A.S., and Inozemtsev, A.O., Distance Learning System for Mathematical
Disciplines CLASS.NET, Herald of Computer and Information Technologies, 2014, no. 10, pp. 36–44.

4. CLASS.NET. The Distance Learning System of Moscow Aviation Institute.
URL: https://distance.kaf804.ru// (Accessed October 12, 2024.)

5. Kuravsky, L.S., Margolis, A.A., Marmalyuk, P.A., et al., A Probabilistic Model of Adaptive Training,
Appl. Math. Sci. (Ruse), 2016, vol. 10, no. 48, pp. 2369–2380.

6. Bosov, A.V., Martyushova, Ya.G., Naumov, A.V., and Sapunova, A.P., Bayesian Approach to the Con-
struction of an Individual User Trajectory in the System of Distance Learning, Informatics and Appli-
cations, 2020, vol. 14, no. 3, pp. 86–93.

7. Bosov, A.V., Application of Self-Organizing Neural Networks to the Process of Forming an Individual
Learning Path, Informatics and Applications, 2022, vol. 16, no. 3, pp. 7–15.

8. van der Linden, W.J., Scrams, D.J., and Schnipke, D.L., Using Response-Time Constraints to Control
for Differential Speededness in Computerized Adaptive Testing, Appl. Psych. Meast., 1999, vol. 23, no. 3,
pp. 195–210.

9. Bosov, A.V., Mkhitaryan, G.A., Naumov, A.V., and Sapunova, A.P., Using the Model of Gamma
Distribution in the Problem of Forming a Time-Limited Test in a Distance Learning System, Informatics
and Applications, 2019, vol. 13, no. 4, pp. 11–17.

10. Naumov, A.V., Mkhitaryan, G.A., and Cherygova, E.E., Stochastic Statement of the Problem of Gen-
erating Tests with Defined Complexity with the Minimization of Quantile of Test Passing Time, Herald
of Computer and Information Technologies, 2019, no. 2, pp. 37–46.

11. Naumov, A.V., Stepanov, A.E., and Ustinov, A.E., On the Problem of Maximizing the Probability of
Successful Passing of a Time-Limited Test, Autom. Remote Control, 2024, vol. 85, no. 1, pp. 64–72.

12. Martyushova, Ya.G., Naumov, A.V., and Stepanov, A.E., Optimization of the Strategy of Passing the
Time-Limited Test According to the Quantile Criterion, Informatics and Applications, 2024, vol. 18,
no. 4, pp. 44–51.

This paper was recommended for publication by A.I. Kibzun, a member of the Editorial Board

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 6 2025


